DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction.

نویسندگان

  • Hans F G Velec
  • Holger Gohlke
  • Gerhard Klebe
چکیده

Following the formalism used for the development of the knowledge-based scoring function DrugScore, new distance-dependent pair potentials are obtained from nonbonded interactions in small organic molecule crystal packings. Compared to potentials derived from protein-ligand complexes, the better resolved small molecule structures provide relevant contact data in a more balanced distribution of atom types and produce potentials of superior statistical significance and more detailed shape. Applied to recognizing binding geometries of ligands docked into proteins, this new scoring function (DrugScore(CSD)) ranks the crystal structures of 100 protein-ligand complexes best among up to 100 generated decoy geometries in 77% of all cases. Accepting root-mean-square deviations (rmsd) of up to 2 angstroms from the native pose as well-docked solutions, a correct binding mode is found in 87% of the cases. This translates into an improvement of the new scoring function of 57% with respect to the retrieval of the crystal structure and 20% with respect to the identification of a well-docked ligand pose compared to the original Protein Data Bank-based DrugScore. In the analysis of decoy geometries of cross-docking studies, DrugScore(CSD) shows equivalent or increased performance compared to the original PDB-based DrugScore. Furthermore, DrugScore(CSD) predicts binding affinities convincingly. Reducing the set of docking solutions to examples that deviate increasingly from the native pose results in a loss of performance of DrugScore(CSD). This indicates that a necessary prerequisite to successfully resolving the scoring problem with a more discriminative scoring function is the generation of highly accurate ligand poses, which approximate the native pose to below 1 angstroms rmsd, in a docking run.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Potential for Modeling and Ranking of Protein-Ligand Interactions

Applications in structural biology and medicinal chemistry require protein-ligand scoring functions for two distinct tasks: (i) ranking different poses of a small molecule in a protein binding site and (ii) ranking different small molecules by their complementarity to a protein site. Using probability theory, we developed two atomic distance-dependent statistical scoring functions: PoseScore wa...

متن کامل

Knowledge-based scoring function to predict protein-ligand interactions.

The development and validation of a new knowledge-based scoring function (DrugScore) to describe the binding geometry of ligands in proteins is presented. It discriminates efficiently between well-docked ligand binding modes (root-mean-square deviation <2.0 A with respect to a crystallographically determined reference complex) and those largely deviating from the native structure, e.g. generate...

متن کامل

DrugScoreRNAKnowledge-Based Scoring Function To Predict RNA-Ligand Interactions

There is growing interest in RNA as a drug target due to its widespread involvement in biological processes. To exploit the power of structure-based drug-design approaches, novel scoring and docking tools need to be developed that can efficiently and reliably predict binding modes and binding affinities of RNA ligands. We report for the first time the development of a knowledge-based scoring fu...

متن کامل

Assessing scoring functions for protein-ligand interactions.

An assessment of nine scoring functions commonly applied in docking using a set of 189 protein-ligand complexes is presented. The scoring functions include the CHARMm potential, the scoring function DrugScore, the scoring function used in AutoDock, the three scoring functions implemented in DOCK, as well as three scoring functions implemented in the CScore module in SYBYL (PMF, Gold, ChemScore)...

متن کامل

Discrete molecular dynamics distinguishes nativelike binding poses from decoys in difficult targets.

Virtual screening is one of the major tools used in computer-aided drug discovery. In structure-based virtual screening, the scoring function is critical to identifying the correct docking pose and accurately predicting the binding affinities of compounds. However, the performance of existing scoring functions has been shown to be uneven for different targets, and some important drug targets ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 48 20  شماره 

صفحات  -

تاریخ انتشار 2005